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L-Band Pulse Phase Measurements of Pulsar B0329+54 Using a

1.8 m Dish Antenna
Ryan McKnight, Graduate Student Member, IEEE, Brian C. Peters, Graduate Student Member, IEEE,

Sabrina Ugazio, Member, IEEE, and Frank van Graas, Senior Member, IEEE

Abstract—Pulsars are rotating neutron stars that emit stable
periodic signals. In this work, pulsar pulse phase measurements
were performed using a dish antenna with a diameter of 1.8 m
with the goal to characterize the repeatability of pulsar timing
measurements using a small-aperture antenna. A low-cost data
collection system using a software-defined radio was designed
and implemented in support of this goal. The instrumentation
was used to observe pulsar B0329+54 for a time span of just over
19 hours at an observation frequency of 1400 MHz. Nine inde-
pendent phase measurements were performed with an integration
time of 1 h each. A probabilistic method using an M -of-N search
algorithm was used to conclude that the pulsar was successfully
detected with a false detection probability of less than 1.4 × 10−4

and that 7 out of the 9 phase measurements were successful. The
standard deviation of the successful measurements was 1.4 ms.

Index Terms—Pulsar, timing, radio astronomy.

I. INTRODUCTION

PULSARS were first discovered in 1967 by Hewish, Bell,
et al. at the Mullard Radio Astronomy Observatory near

Cambridge, U.K. [1]. A pulsar is a rotating neutron star
emitting a high-energy beam of electromagnetic radiation
which is not necessarily aligned with its rotation axis. As the
pulsar rotates, the beam sweeps through space and is observed
at a distance as a series of short, regular pulses [2]. To date,
over 3800 individual pulsars have been identified [3], each
with a unique pulse period and signal profile determined by the
characteristics of the neutron star. Typically, the pulse periods
range from just a few milliseconds to several seconds. Most
known pulsars emit in the radio region of the electromagnetic
spectrum, with a smaller subset visible at optical, X-ray, and
gamma wavelengths [2].

Due to the large rotational mass of a pulsar, their pulse
frequencies are stable. Although terrestrial frequency standards
are a few orders of magnitude more stable in timing, pulsars
could provide an independent check on long-term terrestrial
timescale variations [4], have proven useful for gravitational
wave studies [5], and are being studied for interstellar space
navigation [6]. Pulsars are often observed on Earth by large
radio telescopes such as the 100m Green Bank Telescope
(GBT) at the Green Bank Observatory in West Virginia. These
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observatories perform searches to discover and catalog new
pulsars and produce timing models that can be used to predict
the pulse phase and frequency of a known pulsar signal at
a given time. Position, velocity, and time (PVT) estimation
using pulsars involves performing a measurement of the pulse
phase and/or frequency and computing its deviation from a
prediction produced by a timing model. This process generally
requires a coarse initial estimate of the user’s PVT, which can
be refined over time using a statistical estimation process such
as a Kalman filter [7], [8].

NASA’s Station Explorer for X-ray Timing and Navigation
Technology (SEXTANT) experiment aboard the International
Space Station (ISS) has successfully demonstrated pulsar
phase and frequency measurements in space from low-Earth
orbit (LEO), using X-ray measurements from 4 pulsars to
achieve autonomous, real-time navigation with < 10 km root-
sum-squared (RSS) navigation error [9]. Additionally, simu-
lations show that similar performance could be achieved in
geostationary orbit (GEO) or in a lunar near rectilinear halo
orbit (NRHO) [10]. Pulsar timing could also be performed at
the radio-frequency (RF) bands, as first suggested by [11],
with the advantage that specialized X-ray hardware is not
needed to perform phase and frequency measurements. For
terrestrial users, RF signals are the only suitable option for
pulsar measurements since X-ray pulsar signals are not able
to penetrate the Earth’s atmosphere.

The primary challenge for pulsar timing is the weak sig-
nal strength. While large telescopes such as the GBT can
directly measure the pulsar signal, small-aperture antennas
require the use of long integration techniques to raise the
signal-to-noise ratio (SNR) to a level sufficient to perform
the measurements. When using a small-aperture (less than
20m2) antenna, the signal is well below the noise floor due
to the large distance (on the order of thousands of light-
years) from the Earth to known pulsars [12]. The accuracy
of a pulsar timing measurement is a function of both the
antenna aperture and the integration time used to perform the
measurement, among other parameters (more detail is provided
in Section VI). A review of the existing literature on RF
pulsar navigation and timing was previously carried out by
the authors in [13]. Publications such as [12], [14] suggest
that timing measurements with an accuracy on the order of 10
to 100 µs may be feasible using an antenna with an effective
aperture on the order of 10m2 and an integration time on the
order of a few hours. The ability to accurately measure pulse
phase using such a small antenna would enable a broad range
of timing applications for terrestrial users. Additionally, such
an antenna is near the size that is commonly used for RF
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communications on-board spacecraft. At this scale, spacecraft
could utilize the same set of hardware for RF communications
and pulsar measurements, eliminating the need for dedicated
X-ray detector equipment.

In a previous publication by the authors [15], an experiment
was outlined to observe pulsars using a dish antenna with
an effective aperture of less than 10m2 and analyze the
measurement accuracy that could be obtained with such a
system. In that work, a high-level design for the experiment
was included, and a performance analysis was performed. In
a follow-up study [16], simulated pulsar data were used to
develop and test the phase measurement techniques for the
experiment.

The present work makes the following two contributions.
1) Design, implement, and evaluate instrumentation to re-

ceive an RF pulsar at L-band using a small (1.45m2

effective aperture) antenna.
2) Perform pulse phase measurements and characterize

their repeatability.
The article is structured as follows: Section II provides a

high-level overview of the experiment. Section III outlines the
theoretical background of pulsar timing. Section IV provides
the theoretical background for the phase measurement process.
Section V describes the setup of the experiment and the soft-
ware used to collect the data. Section VI details the analysis
of the collected data and presents the results. Finally, Section
VII summarizes the findings and provides recommendations
for future study.

II. EXPERIMENT OVERVIEW

An experiment was conducted on 8 June 2024 near
McArthur, OH at a site chosen to reduce the potential impact
of radio-frequency interference (RFI). Pulsar B0329+54 was
observed for 19.22 h, resulting in approximately 9.05 h of
useful data for phase measurements. B0329+54 was selected
for observation because it has the strongest signal of any pulsar
visible in the northern hemisphere at 1400MHz. The observa-
tion center frequency was chosen as 1400MHz because of the
ability to repurpose an existing L-band data collection setup
and the common use of 1400MHz for radio astronomical ob-
servations. The International Telecommunication Union (ITU)
designates 1370 to 1427MHz as a preferred frequency band
for radio astronomical measurements due to its proximity to
the Hydrogen line frequency [17]. Pulsar B0329+54 has a
nominal pulse period of approximately 0.715 s. Additionally,
its pulse profile has a relatively sharp peak, with a pulse width
(defined as the width at 50% of its peak power) of 6.6ms [18],
which is beneficial for measurement purposes. Further details
of the pulsar selection are given in [15].

The experiment used a software-defined radio (SDR) to
record RF in-phase/quadrature (I/Q) samples. The use of an
SDR allows for signal samples to be recorded over a period
of several hours and stored to disk for later processing and
analysis. A National Instruments Universal Software Radio
Peripheral (USRP) X310 with a TwinRX daughterboard was
chosen due to its high sampling rate (100Msps) and integrated
GPS-disciplined oscillator (GPSDO). This design choice pro-
vides a favorable observation bandwidth of 1350 to 1450MHz
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Fig. 1. (a) template pulse profile for B0329+54 as recorded at 1410MHz
by the Effelsberg 100m radio telescope [19]. Profile downloaded from the
EPN Pulse Profile Database [20] in EPN format [21]. (b) idealized “top-hat”
version of the pulse profile with the same time-average and maximum value
as the template profile (see Section IV). The ratio P/W is equal to 46.7.
Both profiles are normalized to have unit mean.

at the 1400MHz center frequency. The GPSDO enables each
of the samples to be tagged with a Coordinated Universal Time
(UTC) time stamp, allowing for the relative accuracy of pulsar
phase measurements to be characterized over long time spans.

III. PULSAR TIMING

Pulsars emit periodic signals, each one with a unique spin
frequency and power profile shape. While the power profile
for a given pulsar can vary from one period of the signal
to another, the average power profile across a few hundred
to a few thousand pulse periods is remarkably stable [2].
Pulsar B0329+54 has a nominal period of 0.715 s and a
power profile that is displayed in Fig. 1a. A simple pulsar
timing model can be described by three parameters at a given
epoch: a nominal pulse frequency and its first and second
time derivatives, denoted as f0, f1, and f2. By convention,
these parameters are referenced to the solar system barycenter
(SSB). The timing model is formed by measuring pulse time of
arrivals (TOAs) over a period of time and fitting the parameters
to the measurements. The TOA measurements are made by
performing a phase offset measurement between the observed
pulsar signal and a known template pulse, such as that shown
in Fig. 1a. For power calculation purposes, the pulsar profile
can be approximated by a top-hat shape with a period of P
and a width of W , as shown in Fig. 1b. The set of timing
parameters used for this work were generated by the 76m
Lovell Radio Telescope at the Jodrell Bank Observatory [22]
and obtained from the Australia Telescope National Facility
(ATNF) Pulsar Catalogue [3]. Parameters for B0329+54 are
listed in Table I.

The timing model parameters can be propagated forward
to predict the phase and frequency of the pulsar signal at
a given time. These predictions can be referenced to the
location of the observer instead of the SSB by regarding the
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TABLE I
KEY PARAMETERS FOR PULSAR B0329+54 FROM [18], [22], [23].

Param Description Value Uncertainty

f0 Pulse freq. at epoch 1.3995Hz 6×10−12

f1 1st deriv. of pulse freq. −4.0×10−15 Hz/s 14×10−21

f2 2nd deriv. of pulse freq. 5.3×10−28 Hz/s2 15×10−29

Epoch Epoch for f0, f1, f2 12 February 1986 –
DM Dispersion measure 26.7641 cm−3 · pc 1×10−4

W50 Pulse width (50% of peak) 6.6ms –
S1400 Flux density (1400MHz) 203mJy 57

2024-06-01 2024-06-07 2024-06-13 2024-06-19 2024-06-25 2024-07-01

Date/Time

1.39952

1.39953

1.39954

1.39955

1.39956

1.39957

1.39958

1.39959

1.3996

1.39961

P
u

ls
e

 F
re

q
u

e
n

c
y
 (

H
z
)

06-04 06-05 06-06

1.399552

1.399553

1.399554

1.399555

1.399556

Fig. 2. Pulse frequency for B0329+54 at the observing site during the month
of June 2024 computed using the timing model parameters in Table I. A
portion of the long-term oscillation appears as a steady increase during the
month. The short-term oscillation can be seen more clearly in the detail view
inset.

pulsar signal as a uniform plane wavefront, which is a valid
approximation due to the large distance between the Earth
and the pulsar. The predicted pulse phase and frequency at
the location of the observer, which vary as a function of time,
will be denoted as ϕ(t) and f(t). f(t) varies with time not
only because of its non-zero time derivatives, but also due to
the Doppler effect. Fig. 2 displays a plot of f(t) vs. time for
B0329+54 in McArthur, OH during the month of June 2024.
The Doppler effect causes a long-term sinusoidal oscillation
with a period of 1 year due to the Earth’s orbit around the Sun.
During June 2024 at this particular location, the long-term
oscillation manifested as an average drift of approximately
1.7 × 10−6 Hz/d. An additional oscillation with a period of
24 h results from Earth’s rotation about its axis. It rides on top
of the long-term oscillation and has a peak-to-peak magnitude
of approximately 2× 10−6 Hz. The units of f(t) are Hz. By
convention, ϕ(t) is defined as the time-integral of f(t): as
such, it is a dimensionless quantity with units of cycles such
that one cycle corresponds to one pulse period. Because f(t)
is not constant, ϕ(t) does not advance at a constant rate with
respect to time. In other words, the length of each pulse period
(measured in seconds) varies with time. The timing model
parameters and the location of the observer can be provided
to the open-source pulsar timing software TEMPO2 [24] to
generate a convenient set of polynomial coefficients that can
be used to approximate ϕ(t) and f(t) at a given time.

The definition of ϕ(t) necessarily depends on the choice of

a specific fiducial point on the template pulse used to form the
TOA measurements. This point corresponds to ϕ(t) = 0. In
the present work, an arbitrary fiducial point is used because
the objective is to compare relative phase differences between
successive measurements to characterize their repeatability.

Pulsar signals are affected by frequency dispersion as they
propagate through the ionized component of the interstellar
medium (ISM) such that upper band frequencies of the signal
at 1450MHz arrive at the observer prior to the lower band
frequencies at 1350MHz. The amount of dispersion is ap-
proximately proportional to the distance from the observer
to the pulsar [2]. It is commonly characterized by a value
known as the dispersion measure (DM), which is unique to a
particular pulsar and has units of cm−3 ·pc where pc denotes
a parsec, a unit of distance approximately equal to 3.26 light-
years. The DM for B0329+54 is given by [23] and obtained
from the ATNF catalogue (see Table I). Using this value, the
relative time shift between the pulse arrival time observed at
two separate frequencies f1 and f2 can be calculated using
the following equation [2]:

∆t = D ×
(
f−2
1 − f−2

2

)
× DM (1)

where D is defined as 1/(2.41×10−16 Hz−2 ·pc ·cm−3 ·s−1).
For the experiment conducted in this work, the observation

bandwidth is 100MHz. The maximum relative time shift
within the observing band can be obtained by setting f1 and
f2 to the band edges: 1350MHz and 1450MHz, resulting
in ∆t = 8.11ms. Since the width of the pulse at 50%
of its maximum power is only 6.6ms (see Table I), it is
necessary to correct the pulse dispersion to prevent the signal
power from being smeared in time, reducing the overall
SNR. This correction is implemented by a process known as
incoherent dedispersion, which involves dividing the pulsar
signal samples into a number nchan of frequency channels using
the discrete Fourier transform (DFT) and applying a corrective
time shift to each channel [2], [25]. The process of splitting
the data into multiple frequency channels using the DFT is
known as a software filterbank.

Because of the low pulsar signal strength received by a
small-aperture antenna, non-coherent long integration of the
signal over a time span tint must be performed in order to
detect and measure it. This process is referred to as folding
[2] and is depicted in Fig. 3. It takes advantage of the periodic
nature of the pulsar signal: it is assumed that the signal has a
power profile that can be described by a continuous function
s(ϕ(t)) where s is a periodic function of phase such that
s(ϕ(t)) = s(ϕ(t)+n) for all integers n. The process involves
assigning each time sample of the recorded data to one of nbins
individual bins, numbered 0 to nbins − 1. Each bin represents
the average emission of the pulsar at a particular pulse phase
between 0 and 1, referred to as the phase-center of the bin. The
phase-center ϕn of bin n is given by the following expression:

ϕn = (n+ 0.5)/nbins (2)

The bin number assigned to a sample, given its sample time t,
is ⌊(ϕ(t) mod 1)nbins⌋, where ⌊·⌋ denotes the floor function.

After each sample has been assigned a bin number, the
complex power (given by I2 + Q2) of all the samples that
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Fig. 3. An illustration of the folding process. The vertical lines mark the
boundaries between individual bins. All samples within each bin are averaged
to form the integrated pulse profile.

fall within each of the individual bins are averaged to form an
integrated pulse profile. The integrated pulse profile contains
nbins samples with units of power and represents the average
emission of the pulsar as a function of its pulse phase. The
result of this process is an SNR improvement that scales as a
factor of

√
tint/nbins (see Section VI for details).

The folding process is performed separately for each of the
nchan frequency channels present in the data, resulting in nchan
unique integrated pulse profiles, each containing nbins samples.
The integrated pulse profile values for channel i are denoted
as pi[n], where i ranges from 0 to nchan − 1 and n ranges
from 0 to nbins − 1. The DFT of pi[n] is denoted as Pi[k],
where k ranges from −nbins/2 + 1 to nbins/2. In order to
form a single unified integrated pulse profile, denoted as p[n]
with DFT P [k], the dispersion delay in each channel must be
corrected. First, the dispersion delay ∆ti for each channel i
(with channel frequency fi) relative to the observation center
frequency fc is calculated using (1) by setting f1 = fc and
f2 = fi. Since each integrated pulse profile represents samples
of a periodic signal, a circular time shift of −∆ti is applied
to each one in order to correct for the dispersion delay. The
circular time shift can be applied in the frequency domain by
using the DFT shift theorem [26], in which a circular shift in
the time domain is represented by adding a linear ramp to the
phase of the discrete Fourier coefficients:

P [k] =

nchan−1∑
i=0

Pi[k]e
−j2π∆tik/T0 (3)

where T0 is the average pulse period during the data collection.
p[n] can be computed from P [k] via the inverse DFT.

After the dedispersion and folding process is complete, a
pulse phase measurement is performed by estimating the rela-
tive phase shift between the integrated pulse profile (generated
by the folding process) and a known template profile such as
the one displayed in Fig. 1a. If the timing model used to gen-
erate ϕ(t) for the folding process is accurate, the phase shift
is primarily a function of the observer’s clock bias. The phase
measurement can be used as part of a process to estimate this
clock bias, effectively synchronizing the observer’s local clock
to a known source. Fig. 4 summarizes the steps in the process
of estimating a clock bias using RF pulsar observations.
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Fig. 4. Iterative process of recording samples of a pulsar signal, forming an
integrated pulse profile, measuring the pulse phase, and updating the user’s
time estimate.

Propagation of the timing model parameter uncertainties
listed in Table I from the epoch date to the date of the
experiment indicate that f(t) can be accurately predicted to
within 1.3 × 10−10 Hz, which is sufficient to perform the
folding process. While the uncertainty on the prediction of
ϕ(t) is 0.06, a significant portion of a full pulse period,
this is inconsequential because it is already assumed that the
reference point ϕ(t) = 0 is arbitrary. As mentioned earlier in
this section, only relative phase measurements are considered
in this work.

IV. MEASURING PULSE PHASE

As discussed in Section III, the output of the folding
process is an integrated pulse profile for each of the nchan
frequency channels, each represented by a sequence of nbins
real, discrete-time samples with units of power. A single
frequency channel is considered first for simplicity.

Three discrete-time signals, p[n], s[n], and g[n], are defined,
where n ranges from 0 to nbins − 1:

p[n] = a+ bs[n] + g[n] (4)

p[n] represents the integrated pulse profile samples for each
bin. s[n] represents samples of the template pulse profile. It is
formed by sampling the continuous-phase function s(ϕ) at the
bin phase-centers given by (2). s(ϕ) can be approximated by
phase-interpolating samples of the template signal displayed
in Fig. 1a. In (4), a and b represent a constant DC offset
and scaling factor, respectively, and g[n] represents the power
(I2 + Q2) of a complex Gaussian noise signal with the DC
offset removed (absorbed into a). Note that p[n], s[n] and g[n]
are each real-valued signals with units of power.

The complex-valued DFTs of signals p[n], s[n], and g[n]
are denoted by P [k] = Pke

jθk , S[k] = Ske
jϕk , and G[k] =

Gke
jψk , respectively, where k ranges from −nbins/2 + 1 to
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nbins/2. Equation (4) can be represented in the frequency
domain:

Pke
jθk = anbins + bSke

jϕk +Gke
jψk (5)

Equations (4) and (5) assume that the phase prediction ϕ(t)
used to perform the folding process is error-free. In practice,
it should be assumed that the local clock offset produces
an offset in ϕ(t), denoted by ϕoff. It is assumed that the
local clock has sufficient stability that ϕoff can be considered
constant during the folding period. The result of the offset is
a relative phase shift between the integrated pulse profile and
the template pulse profile. Following [27], (5) is modified to
include this offset:

Pke
jθk = anbins + bSke

jϕk+j2πkϕoff +Gke
jψk (6)

The modification utilizes the DFT shift theorem described in
Section III. Still following [27], the phase offset estimate ϕ̂off
can be determined by the following minimization:

ϕ̂off = argmin
ϕoff

nbins/2∑
k=1

−PkSk cos(ϕk − θk + k2πϕoff) (7)

This frequency-domain estimation process is conceptually
similar to performing a time-domain circular cross-correlation
between p[n] and s[n], but allows for better time resolution
[28]. It is straightforward to solve (7) by using Brent’s method
[29] or other standard minimization techniques.

Now considering all nchan frequency channels, dedispersion
(as described in Section III) must be performed before the
phase offset estimation. The dispersion-corrected integrated
pulse profile DFT coefficients P [k] given by (3) are used
directly in (6) and (7). The rest of the estimation process is
unmodified.

Following [30], the SNR of p[n] is defined by assuming
that the pulsar signal has an ideal top-hat shape with the same
peak and time-average power as the real signal (see Fig. 1b).
The SNR is then equal to the ratio of the on-pulse power of
the top-hat signal to the standard deviation of the noise power
g[n]. By this definition, a pulsar with a given time-average
flux density will have a higher SNR if its power profile has
a sharper peak. The sharpness can be characterized by the
ratio of the length of the period to the width of the top hat
pulse, denoted as P/W . A higher P/W ratio will result in
a higher SNR. Since a real pulsar profile does not have an
ideal top-hat shape, P/W is approximated by dividing the
maximum value of the real profile by its average value during
one period. For the profile in Fig. 1a, P/W is approximated
as 46.7. To estimate the SNR, it is necessary to find estimates
of the constants a and b in (4). The phase offset estimate ϕ̂off
can be used to directly calculate the parameter estimates â and
b̂ using the following equations [27]:

b̂ =

nbins/2∑
k=1

PkSk cos
(
ϕk − θk + k2πϕ̂off

)
/

nbins/2∑
k=1

S2
k (8)

â =
(
P0 − b̂S0

)
/nbins (9)

Following (4), the noise samples g[n] can be estimated
by subtracting the estimated DC offset â and s̃[n], which

represents a phase-shifted template signal formed by sampling
the continuous-phase function s̃(ϕ) = s(ϕ + ϕ̂off) at the bin
phase-centers given by (2), from p[n]. The estimated noise
samples are denoted ĝ[n]:

ĝ[n] = p[n]− â− b̂s̃[n] (10)

Assuming that s(ϕ) has been normalized to have unit mean,
the SNR estimate is given by the following equation:

ˆSNR = (P/W )b̂/σĝ (11)

where σĝ is the standard deviation of the samples of ĝ.

V. DATA COLLECTION

The antenna used for the data collection was a solid dish
with a diameter of 1.8m mounted to a pedestal on a trailer
for portable operation, equipped with a dual-linear polarization
L-band horn feed and a WanTcom WBA1216ASBT low-
noise amplifier (LNA). Only one polarization was used for the
experiment. The dish, feed, and mount were repurposed from
a setup previously used for global navigation satellite systems
(GNSS) signal characterization and monitoring. The antenna
gain was measured to be Ga = 27dBi at GPS L1 frequency
(1575.42MHz) [31], which is equivalent to an effective aper-
ture of 1.45m2 using the relation Ga = 4πAe/λ

2. The half-
power beamwidth of the antenna is 7.2◦. Two motors and a
programmable rotator controller provide azimuth and elevation
pointing with an elevation range of approximately 25◦ to 77◦

and a total azimuth range of 300◦. The data were recorded
using a USRP X310 SDR at a sample rate of 100Msps (I/Q).
A 48-thread HP ProLiant server with 96GB of RAM was used
to control the SDR and rotator controller. The data were stored
on a QNAP network-attached storage (NAS) system connected
to the server using a network interface. The USRP, server,
NAS, and rotator controller were rack-mounted and housed
inside a vehicle for protection from the outdoor elements. AC
power was provided to the equipment via an extension cable
from a nearby cabin. A photo of the setup is shown in Fig.
5, and a block diagram of the instrumentation is provided in
Fig. 6.

Before starting the experiment, site surveys were conducted
by sweeping the dish around its azimuth and elevation travel
while using the SDR to monitor the spectrum within the band
of interest (1350 to 1450MHz), revealing a clean, flat noise
floor.

The L-band setup comes with the advantage of pointing
calibration using GNSS satellites. A coarse calibration of
the azimuth and elevation angles was performed by carefully
leveling the platform and using a magnetic compass. A fine
calibration was then performed by connecting a commercial
GNSS receiver to the antenna and performing azimuth and
elevation sweeps across GPS or Wide Area Augmentation
System (WAAS) satellites with known positions. The carrier-
to-noise density ratio (CN0) was logged as a function of the
pointing angles and used to fine-tune the calibration. After the
calibration was complete, it was estimated by further sweeps
of GNSS satellites that the pointing accuracy was better than
1◦, which is well within the 7.2◦ half-power beamwidth of the
antenna.
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Fig. 5. The data collection equipment setup at the observation site. The
dish has a diameter of 1.8m. It is mounted on a trailer and has an effective
aperture of approximately 1.45m2. The SDR, server, and NAS are mounted
to an equipment rack inside the vehicle.
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Fig. 6. Block diagram of the RF hardware system.

The SDR streamed time-tagged I/Q samples using 16 bits
each for I and Q to the server at a rate of 100Msps ×
32 bits/sample = 3.2Gbps. The use of a 10 gigabit network
interface controller (NIC) on the server was required to
support this sample rate. It was decided not to store the raw
I/Q samples to disk due to the high data rate (equivalent
to 1.44TB/h). Instead, the data were pre-integrated by a
factor of 100 in real-time to reduce the rate. It is necessary
to perform the pre-integration separately for each frequency
channel, requiring the software filterbank described in Section
III to run in real-time. The filterbank employs a fast Fourier
transform (FFT) of length 500 utilizing a Bartlett window
and an overlap of half the FFT length [25], [29]. The data
were recorded, processed, and stored by a custom-developed
software program that used a parallel processing architecture,
taking advantage of the server’s 48 CPU threads. The use
of this parallel architecture was necessitated by the high rate
of data ingested from the SDR. After the filterbank and pre-
integration, the complex power (I2 +Q2) of each FFT point
was stored to disk as a 32-bit floating point number. A block
diagram depicting the real-time data processing software is
displayed in Fig. 7. Data were stored to disk at a rate of
100Msps × 2/100 × 4 bytes/sample = 8MB/s where the
factor of 2 is due to the FFT overlapping, or about 28.8GB/h.

!!"

#$%&'(')**

+,-.'/01*

23',4567&#

1**'8#6#
!!! "

!

!!! "
!

!!

"

!

"

"

!
!"#$$%&'(

!"#$$%&')**

+$,%-.#,%'/**'

0122%0034%'

0#56&%0

94:4'!$7&

!"#$$%&'/
!!! "

!

!

789,:#.%'

;3&,%.<#$=

Fig. 7. Block diagram of the data collection setup. A 48-thread server is
used to perform the software filterbank and integration process in real-time
to reduce the amount of data stored to disk by a factor of 50.

In the field of radio astronomy, it is common to characterize
the spectral flux density of celestial sources in units of Janskys
(Jy), where 1 Jy = 10−26 W ·m−2 ·Hz−1. It is also common
to characterize the gain of the receiver in units of K/Jy,
computed as:

G = Ae/(2kB) (12)

where Ae is the effective aperture of the antenna in m2

and kB is the Boltzmann constant (1381 Jy ·m2/K). For the
receiver used in this experiment, G = 5.24× 10−4 K/Jy. The
total noise temperature Tsys of the observation system can be
estimated by the following equation [2]:

Tsys = Trec + Tspill + Tatm + Tsky (13)

Tspill is assumed to be 10K, and Tatm is assumed to be
negligible [2]. Tsky is a function of the observation frequency
and the pulsar’s position on the celestial sphere, and can
be computed using datasets such as that given by [32]. For
B0329+54 at 1400MHz, Tsky = 4.3K. The receiver noise
temperature can be computed using the Friis formula for noise
temperature [33]:

Trec = T1 +
T2

G1
+

T3

G1G2
+ · · · (14)

where Gi and Ti are the gain and noise temperature, respec-
tively, of component i. Using the values in Table II, Trec is
computed to be 33.1K, and Tsys is computed to be 47.4K.

TABLE II
GAIN AND NOISE FIGURE FOR RECEIVER COMPONENTS.

Component Line Loss
Before LNA LNA RG142 Coax USRP X310

with TwinRX

Gain −0.10dB 36.00dB −8.00dB 0.00dB
Noise Figure 0.10dB 0.35dB 8.00dB 5.00dB

Key parameters of the data collection are summarized in
Table III.

VI. RESULTS AND ANALYSIS

As mentioned in Section II, the data collection was started
on 8 June 2024 and ran for a total of 19.22 h, producing a data
file with a total size of 553GB. The azimuth and elevation
angles used to track the pulsar during the data collection are
displayed in Fig. 8. As shown in Fig. 8a, the pulsar appears in
the Northern portion of the sky because its declination angle
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TABLE III
KEY PARAMETERS FOR THE DATA COLLECTION.

Location McArthur, OH
Observation Center Frequency 1400MHz
Sample Rate (I/Q) 100Msps
Effective Antenna Aperture 1.45m2

Antenna Gain 5.24× 10−4 K/Jy
Estimated System Noise Temperature 47.4K
Polarization linear
Number of Filterbank Channels 500
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Fig. 8. (a) Azimuth and (b) Elevation angles for pulsar B0329+54 at the
observation site during the data collection. Azimuth angle is measured from
North towards East. The total time span is 19.22h. The shaded region of the
elevation plot represents the elevation mask of 22.5◦. The pulsar was below
the mask for 9.67h, and above the mask for 9.55h.

(around 55◦) is greater than the latitude of the observation
(around 39◦). As shown in Fig. 8b, the pulsar never sets below
the horizon at this location, reaching a minimum elevation
angle of approximately 3.9◦.

Before analyzing the data, it is necessary to mask certain
portions which are detrimental to the observation and measure-
ment of the pulsar. When a data point is masked, it is replaced
with zero. Frequency channels within approximately 5MHz of
the upper and lower band edges were masked due to a notable
roll-off in the frequency response of the RF front end of the
SDR. An elevation mask of 22.5◦ was applied to the data
due to the 25◦ minimum elevation travel angle of the rotator
and the 7.2◦ half-power beamwidth of the antenna. Despite
the relatively clean RF environment at the chosen observation
site, minor portions of the data contain some apparent effects
of RFI. Approximately 15 minutes at the beginning and end
of the data collection were masked due to the presence of
cellular phones in the vicinity of the experiment during set-
up and tear-down, which contributed to RFI levels. For the
remainder of the data, an RFI detection and masking algorithm
was implemented based on the identification of outlier samples
in the dataset. The algorithm divided the samples within each
frequency channel into time segments equal to the length of
one pulse period. Within each segment, the mean, standard
deviation, minimum, and maximum values were found, con-

verted to decibels, and plotted as a 2D “waterfall” image. The
scale of the statistics is arbitrary, since the power level of the
data samples is not calibrated. These images are displayed
in Fig. 9. For each of the four statistics, a threshold value
was set. If any statistic within a given frequency channel and
time segment exceeded its threshold, this portion of the data
would be masked. The mask thresholds were hand-adjusted
such that portions of the data that appeared to be contaminated
by RFI were masked. The complete data mask is displayed in
Fig. 10. In total, 58.04% of the data points were masked. The
RFI detection algorithm masked 0.73% of the remaining data
points after applying the block time, frequency, and elevation
masks. Due to the masking, the effective bandwidth of the
observation was reduced from 100MHz to 89.8MHz and the
effective integration time was reduced from 19.22 h to 8.98 h.

The expected post-folding SNR for the observation can be
computed using the radiometer equation. The process was
described in detail in previous publications by the authors
[13], [15], and is summarized here. The radiometer equation
for folded observations is given by [30]:

SNR =
SG

√
np∆f

Tsys

√
tint√
nbins

P

W
(15)

where S is the pulsar’s flux density in units of Jy and G
is the receiver gain in units of K/Jy. np is the number
of independent polarizations averaged (unitless), ∆f is the
observation bandwidth (Hz) and Tsys is the total system noise
temperature (K). This equation makes the assumption that the
pulsar signal has an ideal top-hat shape as described in Section
IV. The ratio P/W was also defined in Section IV. Using these
parameters, which are summarized in Table IV, the expected
post-folding SNR is computed to be 9.15 dB for an integration
time of 8.98 h.

TABLE IV
PARAMETERS USED TO COMPUTE EXPECTED SNR.

S Pulsar flux density at 1400MHz 203mJy
G Antenna gain 5.24× 10−4 K/Jy
np Number of polarizations 1
∆f Effective Observation bandwidth 89.8MHz
Tsys Total system noise temperature 47.4K
tint Effective Integration time 8.98h
nbins Number of bins used for folding 512
P/W Period to pulse width ratio 46.7

SNR Expected SNR 9.15dB

After the data mask was applied, the folding, dedispersion,
and phase offset estimation processes described in Sections
III and IV were applied to the data. The resulting integrated
pulse profile p[n] is displayed in Fig. 11a. The phase and
SNR estimation processes yield results of ϕ̂off = 0.38390 and
ˆSNR = 5.90, respectively. Fig. 11b displays p[n] (from Fig.

11a) overlaid with the template profile after phase shifting it
by ϕ̂off (from (7)) and scaling it by b̂ (from (8)). The sum term
in (7) is plotted as a function of ϕoff in Fig. 12, demonstrating
that ϕ̂off is the value that minimizes the equation. Although
the sharp peak displayed in Fig. 12 is a reasonable indication
that a real pulsar signal has been measured, it should be noted
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Fig. 9. Waterfall plots depicting four statistics used to detect RFI in the data. Red points represent values that exceed the masking threshold. The statistics
are computed separately for each of the 500 frequency channels in the data, over a time period equal to one pulse period. The units are decibels with an
arbitrary scale. The roll-off of the SDR front-end is visible at the band-edges. (a) Mean value, threshold = 23dB. (b) Standard deviation, threshold = 13dB.
(c) Minimum value, threshold = 21dB. (d) Maximum value, threshold = 25dB.

that the estimation process will always provide estimates for
ϕ̂off and ˆSNR, even if there is no actual pulsar signal present
in the data. Therefore, some additional tests must be applied
to verify that the measurement is valid.

The first test involves varying the DM value used to
dedisperse the data. The dedispersion process presupposes
B0329+54’s known DM value of 26.76 cm−3·pc. It is expected
that this DM value should result in the lowest minimum peak
for the sum term in (7) compared to other, incorrect DM
values. This can be verified by making no presuppositions
about the DM value and varying it over a range to find the
value that minimizes this sum term. An independent phase
measurement is performed at each of the DM values that
are searched. Fig. 13 shows the results of this search, which
finds that the sum term is minimized at 30.8 cm−3 · pc,
which is near the expected DM value of 26.76 cm−3 · pc.
The minimum value, −1.909× 105, lies on a flat part of the
minimization curve and differs by only 0.16% from the value
of −1.906× 105 that occurs at the expected DM value.

A second test is an adaptation of a method previously used
to determine the probability of false acquisition for GNSS
signals [34]. It involves splitting the data into a number N
of independent time segments and performing repeated pulse
phase measurements. Since the total unmasked portion of the
data amounted to just over 9 h, the data can be split into
N = 9 segments of length 1 h each. For each data segment, a
phase offset measurement is performed. The method given by
[34] is then used to bound the probability of false detection.
First, a histogram is used to assign each measurement to
one of L individual bins, and the most repeated value is
determined. Since the width of the idealized top-hat pulse
is approximately 1/50 of the period, L = 100 was chosen
as a conservative value. If an individual measurement agrees
with the most repeated value within ±1 histogram bin, the
measurement is called a “normal operation.” The results of
the 9 individual measurements are listed in Table V. The
error column in Table V is computed relative to the mean
value of the normal operations, which is equal to 0.3840. It
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Fig. 10. Complete data mask used for the analysis. The first and last 15
minutes are masked, along with 9.67h in the middle when the pulsar was
below the elevation mask. Approximately 5MHz at the upper and lower band
edges is masked due to a roll-off in the frequency response of the SDR front-
end. The remaining scattered points were masked due to exceeding one of
the thresholds in Fig. 9. In total, 58.04% of the data points were masked.
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Fig. 11. (a) Dispersion-corrected integrated pulse profile p[n] for the data
set. (b) p[n] is overlaid with b̂s̃[n], which is the template pulse profile after
phase-shifting by ϕ̂off and scaling by b̂. The estimated SNR is 5.90dB.

should be noted that when the phase measurement does not
succeed (a non-normal operation), the method used to estimate
SNR does not apply such that the value computed for ˆSNR is
meaningless. The total number of normal operations resulting
from the N trials is denoted as K. It is assumed that if the
pulsar signal is not present in the data, or if the SNR is not
high enough to successfully perform a phase measurement,
the phase measurement will be uniformly distributed over the
L histogram bins. Since there are 3 possible bins for a valid
measurement to land in, the single-trial probability of false
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Fig. 12. Plot of the sum term in (7) vs. ϕoff. The value of ϕoff which minimizes
the equation is found using Brent’s method [29] and forms the phase offset
estimate ϕ̂off. This graph is conceptually similar to a cross-correlation peak.
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Fig. 13. Minimization of the sum term in (7) for a range of DM values. The
value that results in the lowest minimum is close to the expected value of
26.76 cm−3 · pc.

detection Pfd can be over-bounded [34]:

Pfd < 1/(L− 3) (16)

A threshold M is chosen such that a successful detection is
declared when K ≥ M . M should be chosen to be high
enough such that the overall probability of false detection,
denoted PFD, is low. PFD can be computed given the single-
trial false detection probability [34]:

PFD = L

N∑
i=M

(
N

i

)
(1− Pfd)

N−i
(Pfd)

i (17)

If M is chosen to be 4, then the overall false detection
probability is 1.4 × 10−4. For the measurements in Table V,
7 out of the 9 measurements are normal operations, such that
K = 7 > M , and a successful detection is declared.

The third and final test involves plotting the estimated SNR
and phase as a function of the total integration time tint.
According to (15), the SNR should increase proportionally to√
tint. Estimates of ˆSNR and ϕ̂off as a function of integration

time were formed by truncating the data to various values
of tint. The results are displayed in Figs. 14 and 15. Fitting
a function of the form SNR = k

√
tint to the data in Fig.

14 displays the expected relationship. Fig. 15 shows that the
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TABLE V
INDIVIDUAL 1h MEASUREMENTS.

Number ϕ̂off Error ˆSNR (dB) Normal Op

1 0.3826 -0.0014 1.84 Yes
2 0.3831 -0.0009 1.87 Yes
3 0.3820 -0.0020 2.12 Yes
4 0.5685 +0.1845 2.22 No
5 0.3864 +0.0024 3.44 Yes
6 0.8006 +0.4166 0.56 No
7 0.3870 +0.0030 3.29 Yes
8 0.3832 -0.0009 1.26 Yes
9 0.3838 -0.0002 1.87 Yes
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Fig. 14. Estimated SNR as a function of the total effective integration time
tint, overlaid with a curve fit to SNR = k

√
tint. k = 1.38 when tint is

measured in hours.
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Fig. 15. Estimated phase offset ϕ̂off vs. effective integration time tint.

variance of the phase offset estimate improves as a function
of the integration time. The behavior exhibited between 5
and 7 h, where the value of the offset shifts upward slightly
before converging on a different value, may be caused by the
properties of the pulse shape. It is similar to the behavior
exhibited by simulations of the pulsar conducted in [16].

The important parameters of the data collection are sum-
marized in Table VI. The 5.90 dB estimated SNR of the full
data set is 3.25 dB lower than the SNR of 9.15 dB that was
predicted by (15). This difference can most likely be attributed
to unmodeled sources of noise in the system, unmitigated
effects of RFI, inefficiencies in data processing, and the fact
that the real pulsar profile is not an ideal top-hat shape as

TABLE VI
ANALYSIS PARAMETERS AND RESULTS FOR THE DATA COLLECTION.

Start Time (EDT) 8 June 2024 5:10 PM
End Time (EDT) 9 June 2024 12:23 PM
Total Length 19.22h
File Size 553GB
Effective Length (After Masking) 8.98h
Effective Bandwidth (After Masking) 89.8MHz
Number of Bins used for Folding 512
Estimated Post-Folding SNR 5.90dB
Estimated Phase Offset 0.38390

assumed by (15). These cumulative effects serve to raise the
effective noise level of the system. The effective total system
noise temperature Tsys can be estimated by using the estimated
SNR value of 5.90 dB in (15) and solving for Tsys. This yields
an estimated Tsys value of 100.1K.

The standard deviation of the 7 normal operation phase
measurements in Table V is equal to 1.9×10−3. This standard
deviation can be expressed in terms of time by multiplying it
by the mean length of a pulse period during the data collection,
0.7145 s, yielding a timing standard deviation for these 7
measurements of 1.37ms. The theoretical timing standard
deviation can be computed based on the SNR using the
following equation [35]:

σSNR =
Weff

SNR
√
nbins

(18)

where Weff is an effective pulse width computed from the
samples of the template pulse:

Weff =
(P/W )T0[

nbins
∑nbins−1
i=1 (s[i]− s[i− 1])

2
]1/2 (19)

Weff is computed to be 55.1ms. Using (15) and the values in
Table IV but with tint set to 1 h, the theoretical SNR for the 1 h
measurements is computed to be 3.89 dB and σSNR = 0.99ms.

VII. CONCLUSIONS

The experiment was successful in observing pulsar
B0329+54 and measuring its pulse phase using an antenna
with an effective aperture of 1.45m2. The estimated SNR after
an integration period of 8.98 h was 5.90 dB, suggesting that
the effective system noise temperature Tsys was approximately
100.1K. In addition, 7 independent phase measurements with
an integration time of 1 h each were successfully performed.
The standard deviation of these 7 phase measurements, ex-
pressed in units of time, was 1.37ms, which is only 0.38ms
higher than the theoretical standard deviation of 0.99ms. The
results of the experiment demonstrate the feasibility of using
a small aperture antenna to perform phase measurements of
pulsar signals. The observed SNR was 3.25 dB lower than the
expected SNR, which can be attributed to unmodeled sources
of noise in the system, unmitigated RFI effects, inefficiencies
in data processing, and the idealized assumptions of the
expected SNR computation.

For future studies, a larger data set could be collected over
a period of multiple days, allowing for several independent
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phase measurements with integration times greater than 1 h to
be performed. It is expected that phase measurement accuracy,
like SNR, scales as a factor of

√
tint [2]. A larger data

set will enable a thorough investigation of this relationship.
Additionally, multiple data sets could be recorded over a
time span of weeks or months, allowing for the evaluation
of long-term relative stability of the phase measurements. It is
expected that a performance improvement could be achieved
by taking advantage of the dual-polarization feed to record
two orthogonal polarizations simultaneously. According to
(15), the use of two polarizations could increase the SNR
by a factor of

√
2. Further tuning and optimization of the

dedispersion process or alternative dedispersion methods could
also result in SNR improvements [25]. While this experiment
was conducted at a remote location to obtain a relatively clean
RF environment, future experiments could be conducted in
more challenging environments which may necessitate the use
of improved RFI mitigation techniques.
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